Estimation of spinal loads using a detailed finite element model of the L4-L5 lumbar segment derived by medical imaging kinematics; a feasibility study

نویسندگان

  • Mohammad Saber Hashemi M.Sc. Student, School of Mechanical Engineering, College 2 of Engineering Schools, University of Tehran. Tehran, Iran.
  • Navid Arjmand Ph.D., School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
چکیده مقاله:

Introduction: Low back pain is the most prevalent orthopedic disorder and the first main cause of poor working functionality in developed as wells as many developing countries. In Absence of noninvasive in vivo measurement approaches, biomechanical models are used to estimate mechanical loads on human joints during physical activities. To estimate joint loads via musculoskeletal models, the calculation of muscle forces is of importance. It is however difficult to estimate muscle forces as the number of muscles, i.e. unknown parameters, is far more than the existing degrees of freedom; the system is highly redundant.   Materials and Methods: In this study, instead of muscle forces estimation, their effects (i.e., rotations and displacements) is measured by medical imaging techniques and prescribed to a detailed finite element model of the L4-L5 spine segment to determine intervertebral disc pressure as a representative of compressive forces acting on the joint. A previously validated geometrically-detailed passive finite element model of the L4-L5 segment was used. Disc, facet joints, vertebrae, and ligaments were simulated with appropriate elements/material properties. Rotations and displacements of the L4 and L5 vertebrae from supine to upright and from upright to trunk flexion of 10 degrees were measured via x-ray imaging.   Results: The kinematics were prescribed to the L4 and L5 centroids. Maximal intradiscal pressure of ~0.45 MPa was predicted for the simulated tasks that was in agreement with in vivo data in the literature.   Conclusion: Preliminary results indicate feasibility of this kinematics-based approach to predict in vivo spine loads.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Load Sharing in L4-L5 Spinal Motion Segment Using an Asymmetrical Finite Element Model

Lumbar spine degeneration diseases require precise prediction of biomechanical parameters. These parameters include stress in ligaments, intradiscal pressure and facet loads. For this purpose, several symmetrical FE models of lumbar spine have been proposed previously with inherent simplifications in design. Such models may not give realistic results for biomechanical analysis because of the as...

متن کامل

a study on insurer solvency by panel data model: the case of iranian insurance market

the aim of this thesis is an approach for assessing insurer’s solvency for iranian insurance companies. we use of economic data with both time series and cross-sectional variation, thus by using the panel data model will survey the insurer solvency.

investigating the feasibility of a proposed model for geometric design of deployable arch structures

deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...

A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs.

With the aim to study disc degeneration and the risk of injury during occupational activities, a new finite element (FE) model of the L4-L5-S1 segment of the human spine was developed based on the anthropometry of a typical Colombian worker. Beginning with medical images, the programs CATIA and SOLIDWORKS were used to generate and assemble the vertebrae and create the soft structures of the seg...

متن کامل

the effect of consciousness raising (c-r) on the reduction of translational errors: a case study

در دوره های آموزش ترجمه استادان بیشتر سعی دارند دانشجویان را با انواع متون آشنا سازند، درحالی که کمتر به خطاهای مکرر آنان در متن ترجمه شده می پردازند. اهمیت تحقیق حاضر مبنی بر ارتکاب مکرر خطاهای ترجمانی حتی بعد از گذراندن دوره های تخصصی ترجمه از سوی دانشجویان است. هدف از آن تاکید بر خطاهای رایج میان دانشجویان مترجمی و کاهش این خطاها با افزایش آگاهی و هوشیاری دانشجویان از بروز آنها است.از آنجا ک...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 15  شماره Special Issue-12th. Iranian Congress of Medical Physics

صفحات  248- 248

تاریخ انتشار 2018-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023